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1. Introduction

Let k be an algebraically closed field of characteristic zero and V a finite dimensional k-vector
space. Denote by Aff(V ) the group of affine transformations of V , i.e. the maps ϕ : V → V of the form
ϕ(a) = ga + v where g ∈ GL(V ) and v ∈ V . It is isomorphic to V + o GL(V ). Its Lie algebra aff(V )
is isomorphic to V o End(V ). Viewed as variety, V is equal to the affine n-space Ank and Aff(V ) acts
naturally on Ank by ((g, v), a) 7→ ga+ v, called the standard action, and it is faithful.

Theorem 1.1. Let X be an irreducible variety on which Aff(V ) acts faithfully. Assume dim(X) ≤
dim(V ). Then X is Aff(V )-isomorphic to V equipped with the standard operation of Aff(V ) on V .

The conjugacy classes of Aff(V ) acting on itself by conjugation are known, and one can find a
description in [Bla06] by JÉRÉMY BLANC. We will use a a similar but more geometric approach to
prove that:

Theorem 1.2. There are finitely many Aff(V )-conjugacy classes in CX × V . We denote them by
C(X,0), C(X,x1), . . . , C(X,xs). Then for i = 1, . . . , s

(1) C(X,xi) =
⋃
Y ∈CX

{Y } × (SY yi + Im(Y )), where yi = gxi for some g ∈ GL(V ) such that

Y = gXg−1.
(2) CX × V = C(X,x1) ⊃ · · · ⊃ C(X,xs) ⊃ C(X,0) = C(X,0).

For any algebraic group G, let πG,N : g⊕N → g⊕N//G the algebraic quotient of the adjoint action
of G on N copies of its Lie algebra g. Let SAff(V ) ⊂ Aff(V ) be the subgroup consisting of elements of
determinant one.

Theorem 1.3. Let pr : aff(V )⊕N → gl(V )⊕N . Then

(1) πAff(V ),1 = πGL(V ),1 ◦ pr
(2) πSAff(V ),1 = πSL(V ),1 ◦ pr
(3) πAff(V ),N = πGL(V ),N ◦ pr
(4) If dim(V ) = 2, then πSAff(V ),2 does not factor through πSL(V ),2.

We give the ring of invariants O(saff2
⊕2)SAff2 explicitly and thereby show that there exist invariants

depending entirely on the translations V +.

I thank my advisor Prof. Dr. Hanspeter Kraft for his excellent supervision, many useful and elegant
ideas, interesting discussions and constant support.

2. Preliminaries and terminology

We assume the reader to be familiar with basic concepts and results from affine algebraic geometry. For
an affine variety X, denote by O(X) its coordinate ring, and VX(f1, . . . , fn) the zero set of f1, . . . , fn ∈
O(X).
Aff(V ) is the semi-direct product of the linear maps GL(V ) and the normal subgroup of translations
V +,

Aff(V ) = V + o GL(V ) where(g, v)(a) = ga+ v,



2

and the product is defined by
(v, g)(w, h) = (gw + v, gh).

We will often use the identification g = (0, g) for g ∈ GL(V ) and v = (e, v) for v ∈ V +. In case V = kn

we shortly write Affn = Affn(k) = (kn)+ nGLn. We embed Aff(V ) into GL(V ⊕ k) in the usual way:

(v, g) 7→
[
g v
0 1

]
.

The Lie algebra of Aff(V ) is given by aff(V ) = GL(V )⊕ V which embeds into gl(V ⊕ k) by (X,x) 7→[
X x
0 0

]
. It follows that the Lie brackets is

[(X,x), (Y, y)] = (XY − Y X,Xy − Y x)

and the adjoint action of Aff(V )

Ad(v, g)(X,x) = (gXg−1, gx− gXg−1v)

In particular, Ad(g)(X,x) = (gXg−1, gx) and Ad(v)(X,x) = (X,x−Xv).
The subgroup of Aff(V ) consisting of element of determinant one is denoted by SAff(V ). It is isomorphic
to V o SL(V ), and its Lie algebra is saff(V ) = sl(V )⊕ V .

2.1. Associated bundles. Let G be an algebraic group, H ⊂ G a closed subgroup and X an H-
variety. On G×X we consider the following action of H:

h · (g, x) := (gh−1, hx)

The action is free and all H-orbits are closed and isomorphic to H.

Proposition 2.1. The quotient π : G×H → (G×X)//H exists, is a smooth geometric quotient and
will be denoted by G ∗H X. The projection pr1 : G×X → G induces a morphism p : G ∗H X → G/H
such that the diagram

G×X π //

pr1

��

G ∗H X

p

��
G // G/H

is cartesian.

The map p : G ∗H X → G/H is called the associated bundle of the principal bundle G→ G/H. The
name bundle refers to the fact that p is locally trivial in the étale topology. If X is a vector space V with
a linear action of H one can show that p is a vector bundle, hence locally trivial in the Zariski-topology.

We will not give a proof of the proposition here.

Some special cases. Assume that X is an H-stable locally closed subset of a G-variety Y . Consider
the following commutative diagram:

G×X

π

��

⊆ // G× Y '
(g,y)7→(g,gy)

//

π

��

G× Y

π̃×id
��

G ∗H X

p
%%

⊆ // G ∗H Y

p

��

' // G/H × Y

pr1xx
G/H

It follows that G ∗H Y is the trivial fibre bundle over G/H with fibre Y and that G ∗H X is locally
closed in G ∗H Y . From this one can deduce that p : G ∗H X → G/H is a bundle with fibre X.

If H ⊂ G is a reductive subgroup and X an affine H variety, then the quotient (G×X)//H exists
as an affine variety with coordinate ring O(G×X)H and is equal to the orbit space G ∗H X since all
the orbits are closed (see subsection ??). It follows from the LUNA’s Slice Theorem (see f.e. [NE]) that
p : (G×X)//H → G/H is a bundle with fibre X.
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Theorem 2.2. Let G be an algebraic group and let ϕ : X → Y be a G-equivariant morphism of
G-varieties. Assume that Y = Gy for some y ∈ Y . Then there is a canonical G-isomorphism

G ∗Gy ϕ
−1(y)

'−→ X, [g, z] 7→ gz.

Proof. The associated bundle is well defined since ϕ−1(y) is a Gy-stable closed subset of the G-variety
X. Let ψ : G×ϕ−1(y)→ X, (g, z) 7→ gz, which is a H-invariant morphism. Consider the commutative
diagram

G

µy

��

G× ϕ−1(y)
proo ψ //

π

��

X

ϕ

eeG/Gy ' Y G ∗Gy ϕ−1(y)
poo

∃!θ

99 , g_

��

(g, z)
�oo � //

_

��

gzU

ccgϕ(z) = gy = gGy [g, z]
�oo

:

==
,

where π : G × ϕ−1(y) → G ∗Gy ϕ
−1(y), (g, z) 7→ [g, z] is the quotient map, p the bundle morphism,

pr the canonical projection and µy the orbit map. Since π is the quotient map there exists a unique
Gy-morphism θ : G∗Gy

ϕ−1(y)→ X such that θ◦π = ψ. From the diagram it follows that θ is injective

and also surjective since X = ϕ−1(Gy) = Gϕ−1(y) implies that ψ is surjective. It now is left to show
that θ−1 is a morphism: From the commutative diagram

G ∗Gy X
f

'
// G/Gy ×X

pr2

��

Y ×X
'oo

G ∗Gy ϕ−1(y)
?�

ι

OO

θ // X

ϕ×id

99
, [g, z]

� // (gGy, gz)_

��

(gy, gz)
�oo

[g, z]
_

OO

� // gz
3

99
,

it follows that it is enough to show that pr2 : f(ι(G ∗Gy ϕ
−1(y))) −→ X is an isomorphism. In fact, its

inverse is given by x 7→ (ϕ(x), x) which is obviously a morphism. �

A geometric meaning of this theorem can be seen in the following way:

Corollary 2.3. There is a bijection

{G-orbit on X} bij←→ {Gy-orbit on ϕ−1(y)},
Gx 7−→ Gx ∩ ϕ−1(y)

Gz 7−→Gyz
Moreover, the bijection respects the orbit closure.

2.2. Complete varieties. To define completeness, a short introduction of a more general concept of
a variety is necessary and we will follow the definitions of [Mum99]. We remark that [Mum99] only
covers irreducible varieties. For non-irreducible varieties see for example [Hum75].

A variety is a prevariety which satisfies the Hausdorff axiom, i.e. ∆(X) = {(x, x) : x ∈ X} is closed
in X×X with respect to the Zariski-topology on X×X. A prevariety is a connected topological space
X together with a sheaf OX of k-valued functions on X and with a finite open covering {Ui} of X
such that Ui together with the restricted sheaf (OX)Ui

is an affine variety.
A continuous map ϕ : X → Y is a morphism if and only if for every open subset U ⊂ Y and

f ∈ OY (U), f ◦ ϕ ∈ OX(ϕ−1(U)).
Affine and projective varieties are varieties, and for affine varieties the above definition of morphisms

coincides with the definition of morphisms between affine varieties [Mum99].

Definition 2.4. A variety X is complete if for all varieties Y , the projection morphism pr2 : X×Y → Y
is a closed map.

A complete variety has the following properties (cf.[Mum99]):

(i) Let f : X −→ Y be a morphism where X is complete. Then f(X) is closed in Y and complete.
(ii) An affine variety is complete only if its dimension is zero, i.e. it is a finite sets of points.

Theorem 2.5 (cf.[Mum99]). Pn is complete for every n.
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Corollary 2.6. For n ≥ 1, there is no injective morphism from Pn into an affine variety.

3. Faithful Aff(V )-operation on irreducible affine varieties of dimension n

Theorem 3.1. Let dimV = n and let X be an irreducible variety on which Aff(V ) acts faithfully.
Then dimX ≥ n.
If dimX = n, then X is Aff(V )-isomorphic to V equipped with the standard operation of Aff(V ) on
V .

The first part of the theorem follows from the fact that if Aff(V ) acts faithfully on X, then also Tn
acts faithfully on X together with the following lemma:

Lemma 3.2 (see [Kraft11]). Let X be an irreducible affine variety on which Tn acts faithfully. Then
the set of points with trivial stabiliser is open and dense in X. In particular, X has dimension at least
n.

Proof. First, let X be a vector space V of dimension d and ρ : Tn −→ GL(V ) a faithful representation
of Tn. There exist characters χ1, . . . , χd of Tn and a suitable basis of V such that for every t ∈ Tn, ρ(t)
is the diagonal matrix diag(χ1(t), . . . , χd(t)).

Let A := {v ∈ V : StabTn
(v) 6= {e}}. Then A ⊂

⋃n
i=1 k

i × {0} × kn−1−i. Let I ⊂ {0, 1}n and Hα =∏n
i=1Bαi

, α = (α1, . . . , αn), B0 = {0} and B1 = k. For any v ∈ A and any diagonal matrix D, we
have Dv ∈ A. Hence A =

⋃
α∈I Hα. Thus A is closed.

Observe that Hα is T -stable and the action of T on Hα is not faithful for any α .
Now, let X be a irreducible affine variety on which Tn acts faithfully. Since Tn acts faithfully on X

there exists an injective Tn-equivariant morphism θ : X −→ Cn such that θ(X) is closed and Tn-stable
and X is Tn-isomorphic to θ(X). Assume that θ(X) ⊂ A. Since X is irreducible there exists α ∈ I such
that θ(X) ⊂ Hα. The action of Tn on θ(X) is faithful and hence the action of Tn on Hα is faithful as
well, which is a contradiction to the above observation. It follows that A ∩ θ(X) ( θ(X) is a closed
subset and hence the set of points of X with trivial stabilizer is open and dense dense in X. �

The proof needs the two following lemma Lemma 3.3. Consider the split exact sequence

0 // Aff(V )
p // GL(V ) // 0

where we fix a section, i.e. an embedding GL(V ) ↪→ Aff(V ).

Lemma 3.3. Let G ⊂ Aff(V ) be a closed subgroup. Then the canonical morphism p̄ : Aff(V )/G →
GL(V )/p(G) has the structure of a GL(V )-vector bundle.

Proof. Let G′ := p(G) ⊂ GL(V ). The morphism p̄ : Aff(V )/G → GL(V )/G′ is GL(V )-equivariant.
The subgroup W := V +∩G is a subvector space of V which is stable under G′. Moreover, for (v, g) ∈ G
and w ∈ W , we have W 3 (v, g)w(v, g)−1 = gw. It follows that p̄−1(eG′) = V/W has the structure of
a vector space with a linear action of G′. Hence, by Theorem 2.2,

Aff(V )/G ' GL(V ) ∗G′ V/W,

and this is a GL(V ) bundle over GL(V )/G′ as explained in the subsection ”Associated bundles”. �

Proof of Theorem 3.1. Let X be an affine variety of dimension dim(X) = n := dim(V ) with a faithful
action of Aff(V ). Then a maximal torus T ⊂ GL(V ) acts also faithfully, hence has a dense orbit Tx0 by
Lemma 3.2. It follows that the stabiliser G := StabAff(V )(x0) has codimension n, i.e. dim(Aff(V )/G) =
n. With the notation of Lemma 3.3 we obtain that

(?) n = dim(V/W ) + dim(GL(V )/G′),

where W = V + ∩G = StabV +(x0). Since V + acts faithfully on X, we have W ( V +.
We claim that W = (0), or, equivalently, that G′ = GL(V ). W is G′-stable, hence G′ is a subgroup of

StabGL(V )(W ). If W 6= (0), then G′ is contained in the in the parabolic subgroup P = PW normalising

W . Thus dim(G′) ≤ dim(P ) = n2 − (n− d)d, where d = dim(W ) < n, and so dim(GL(V )/G′) ≥
d(n− d). With (?), it follows that

n = (n− d) + dim(GL(V )/G′) ≥ (d+ 1)(n− d)
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and so n = d + 1 and hence G′ = PW . Therefore, by Lemma 3.3, Aff(V )/G is a vector bundle over
the projective variety GL(V )/PW , which is a contradiction, because Aff(V )/G is an orbit and hence
quasi-affine.

Since W = StabV +(x0) = {e}, the orbit map V + → X is an Aff(V )-equivariant isomorphism, and
G is isomorphic to GL(V ). Since GL(V ) is a fully reducible subgroup of Aff(V ), G and GL(V ) are
conjugate [Most]. In fact, there exist v ∈ V + such that vGv−1 = GL(V ). By putting x′0 = v−1x0, we
can assume that G = GL(V ). Lemma 3.3 implies that the canonical morphism V → Aff(V )/GL(V ) is
also an Aff(V )-equivariant isomorphism. This proves the claim. �

4. The conjugacy classes in Aff(V ); A geometric approach

Consider the adjoint action of Aff(V ) on its Lie algebra aff(V ) = gl(V ) ⊕ V , which is given by
(g, v) · (X,x) := Ad(g, v)(X,x) = (gXg−1, gx− gXg−1v).

4.1. The conjugacy classes. Denote by C(X,x) (resp. CX) the orbit of Aff(V ) (resp. GL(V )) on
aff(V ) (resp. gl(V )). Remark that for any (X,x) ∈ Aff(V ), and any (Y, y) conjugate to (X,x), X
and Y are conjugate in gl(V ) under GL(V ), hence C(X,x) ⊂ CX × V and the latter is covered by the
conjugacy classes of the form C(X,x). Observe that the action of GL(V ) on gl(V ) can be extended to

an action of Aff(V ) by defining (g, v) ·X := gXg−1. It is easy to see that

SX := StabAff(V )X = StabGL(V )X × V.

The split exact sequence

0 // V + // Aff(V )
pr // GL(V ) // 0

induces a projection pr : C(X,x) −→ CX for every (X,x) ∈ Aff(V ) which by theorem 2.2 implies that
we have an Aff(V )-equivariant isomorphism

C(X,x) ' Aff(V ) ∗SX
pr−1(X).

Corollary 2.3 applied to our situation gives the following bijection respecting the closure of the
orbits:

(?) {Aff(V )-orbit on CX × V }
bij←→ {SX -orbit on V }

By construction, the action of SX on V has the following description:

(g, v) · x = gx−Xv

and so the SX -orbit is given by SX · x+ Im(X). Hence there is a bijection

(??) {SX -orbits on V } bij←→ {SX -orbits on V/ Im(X)}

which again respects the closures of the orbits. This has the following consequence:

Lemma 4.1. (1) V × CX is a single conjugacy class if and only if X is invertible. It is closed if
and only if X is semisimple.

(2) C(X,0) ' Aff(V )∗SX
Im(X) is closed in CX×V , it is a vector bundle over CX and is contained

in all conjugacy classes in CX × V . This class is closed if and only if X is semisimple.

Proof. We will only prove that fact that pr : C(X,0) → CX is a vector bundle over CX since everything
else is a consequence of the above.
Let rk(X) := r and let Ui1,...,ir := {Y ∈ CX : Yi1 , . . . , Yir are linearly independent}, where Yik is the
ikth column of Y . Ui1,...,ir is a special open set in CX and the family {Ui1,...,ir}i1,...,ir covers CX . Let

Y ∈ Ui1,...,ir . Then Im(Y ) is spanned by Yi1 , . . . , Yir . Define

ϕi1,...,ir : pr−1(Ui1,...,ir ) −→ Ui1,...,ir × Cr, (Y,

r∑
k=1

akYik) 7−→ (Y,

r∑
k=1

akek)

where ek is the kth standard vector in Cr. ϕi1,...,ir is an isomorphism of affine varieties which induces
a vector space isomorphism on the fibres. �
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In order to describe the SX -orbits on V/ Im(X) of a non-invertible element X, and find representa-
tives of them, we make the following construction:
Denote by V0 ⊂ V the generalized eigenspace of the eigenvalue 0, i.e. V0 := ker(Xn). Then V =
V0 ⊕ V ′ where V ′ := Im(Xn). Then V/ Im(X) ' V0/ Im(X0) where X0 := X|V0

, which is nilpo-
tent. By construction the SX -orbits on V/ Im(X) coincide with the SX0

-orbits on V0/ Im(X0) where
SX0 := StabGL(V0)X0. This reduces to the case where X0 is nilpotent.
Now, let n1 > · · · > ns ≥ 1 be the different sizes of Jordan blocks of X0. For every i choose a vector
xi ∈ V0 such that xi /∈ Im(X0), Xni

0 xi = 0 and Xni−1
0 xi 6= 0.

Theorem 4.2. There are finitely many Aff(V )-conjugacy classes in CX×V , denoted by C(X,0), C(X,x1), . . . , C(X,xs).
Then

(1) CX × V = C(X,x1) ⊃ · · · ⊃ C(X,xs) ⊃ C(X,0) = C(X,0).
(2) For i = 1, . . . , s

C(X,xi) =
⋃

Y ∈CX

{Y } × (SY yi + Im(Y ))

where yi = gxi for some g ∈ GL(V ) such that Y = gXg−1.

Proof. Assume that X0 has ki Jordan blocks of size ni. Then dimV0 =
∑
i rini and dimV0/ Im(X0) =∑

i ri. A short calculation shows that the image of SX0
is the subgroup P ⊂ GL(V0/ Im(X0)) isomor-

phic to the subgroup of GL∑
i ri

consisting of lower triangular matrices which have invertible blocks

of size r1, . . . , rs on their diagonal. It is now easy to see that the P -orbits in V0/ Im(X0) are given by
x1, . . . , xs. From this, (?) and (??) it follows immediately that

C(X,xi) = C(X,xi) =
⋃

Y ∈CX

{Y } × (SY yi + Im(Y ))

for every i and
CX × V = C(X,x1) ⊃ · · · ⊃ C(X,xs) ⊃ C(X,0).

C(X,0) = CX × Im(X) is shown by simply calculating it: For every Y ∈ CX , (Y, Y x) is conjugate to
(X, 0). The other inclusion is trivial. �

5. Invariants of the adjoint respresentation of Aff(V ) and SAffn

Denote by SAff(V ) the set of elements of Aff(V ) having determinant one. Its Lie algebra saff(V )
is isomorphic to sl(V )⊕ V and the adjoint action of SAff(V ) is the restriction of the adjoint action of
Aff(V ) in the sense that

AdSL(V )(g, v)(X,x) = AdAff(V )(g, v)(X,x)

for any (X,x) ∈ saff(V ), (g, v) ∈ SAff(V ).
Let πG : g → g//G be the quotient of the adjoint action of G on its Lie algebra g. In this chapter

we will present the quotients πAff(V ) and πSAff(V ).
Denote by pr : aff(V )→ gl(V ) the canonical projection onto gl(V ).

5.1. The invariants of the adjoint representation of Aff(V ). Let (X,x) ∈ aff(V ). Then (g, 0) ·
(X,x) = (gXg−1, gx) = (X, gx) for any g in the center of GL(V ). Let f be an invariant. Then
f(X,x) = f(X, gx) for every g in the center of GL(V ). Thus f is constant on the set {X} × C∗x
and hence also constant on {X} × Cx, which means that f(X,x) = f(X, 0). Since this holds for any
(X,x) ∈ aff(V ), it implies that any invariant is an invariant of the adjoint action of GL(V ), i.e. any
invariant morphism factors through the quotient aff(V )→ gl(V ).

Theorem 5.1.

aff(V )
pr // gl(V )

πGL(V ) // gl(V )//GL(V )

is the quotient of the adjoint action of Aff(V ) on aff(V ), i.e.

πAff(V ) = πGL(V ) ◦ pr.

The proof uses the following well known lemma.

Theorem 5.2 (Richardson Lemma [RL]). Let G be an algebraic group and ϕ : X −→ Y a morphism
of affine varieties. Assume that Y is normal and
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(1) codimY Y \ϕ(X) ≥ 2.
(2) There is a dense open set U ⊂ Y such that for every y ∈ U the fibre ϕ−1(y) contains a dense

orbit.

Then ϕ is the quotient.

Remark 5.3. In the above theorem the condition (2) can be replaced by the following condition (2′):
There is an open set U ∈ Y such that every fibre over U contains a unique closed orbit [PV94].

Proof of theorem 5.1. It suffices to verify (1) and (2) for πAff(V ):
Remember that the quotient of the adjoint action of GL(V ) on gl(V ) is given by

πGL(V ) : gl(V ) −→ Cn, X 7→ (a0(X), . . . , an−1(X))

where χX(t) = tn − an−1(X)tn−1 + · · · + (−1)na0(X) is the characteristic polynomial of X. Observe
that χ(X,x)(t) = tχX(t) for every (X,x) ∈ Aff(V ). πAff(V ) is surjective and π−1

Aff(V )(a0, . . . , an−1) =

pr−1(CX) = CX × V for some X ∈ gl(V ). By theorem 4.2, every fibre contains a dense orbit. �

5.2. The invariants of the adjoint respresentation of SAff(V ).

Theorem 5.4.

saff(V )
pr // sl(V )

πSL(V ) // sl(V )//SL(V )

is the quotient by the adjoint action of SAff(V ) on saff(V ), i.e.

πSAff(V ) = πSL(V ) ◦ pr.

Proof. Let n = dimV . For n = 1 the proposition is clear. For n > 1, we first show that any SAff(V )-
invariant morphism saff(V )→ Z factors through pr: Let (X,x) ∈ saff(V ), which is a subset of aff(V ).
The SAff(V )-orbits on saff(V ) are classified exactly the same way as the Aff(V )-orbits on aff(V ) and
are given by some (X,x1), . . . , (X,xs), (X, 0) and C(X,x1) = CX × V just as in the classification of the
Aff(V )-orbits in Theorem 4.2 (even though the SAff(V )-orbits and Aff(V )-orbits might not be equal
since the orbits of StabSL(V )X and StabGL(V )X on V might not be equal). Hence any SAff(V )-invariant

morphism is constant on a dense subset of CX × V , hence constant on {X} × V .
Let πSAff(V ) : saff(V ) → Q be the quotient by SAff(V ). By the above exists an SAff(V )-invariant

morphism θ : sl(V )→ Q such that πSAff(V ) = θ ◦ pr. Consider the following commutative diagram:

saff(V )
pr //

πSAff(V )

��

sl(V )

πSL(V )

��

θ

ww
Q

∃!σ // sl(V )//SL(V )

∃!ρ

cc

πSL(V ) ◦ pr is SAff(V )-invariant hence there exists a unique SAff(V )-invariant morphism σ : Q →
sl(V )//SL(V ) such that πSL(V ) ◦ pr = σ ◦ πSAff(V ). θ is in particular SL(V )-invariant hence there is a
unique SL(V )-invariant morphism ρ : sl(V )//SL(V ) → Q such that θ = ρ ◦ πSL(V ). It follows that σ
and ρ are inverse to each other, making ρ SAff(V )-invariant. This proves the claim. �

6. Invariants of the adjoint action of Aff(V ) and SAffn

on several copies of Aff(V ) and saffn respectively

For any algebraic group G, we can canonically extend the adjoint action on its Lie algebra g onto
an action on g⊕N , by

Ad(g)(Y1, . . . , Yn) = (Ad(g)(Y1), . . . ,Ad(g)(YN ))

for any g ∈ G, (Y1, . . . , YN ) ∈ g⊕N . By abuse of notation, we will call it the adjoint action of G on
g⊕N . Denote by πG,N : g⊕N → g⊕N//G the quotient of the adjoint action of G on g⊕N .

We ask whether the invariants of the adjoint action of Aff(V ) and SAff(V ) on several copies of
Aff(V ) and saff(V ) are independent of the translations as well. In the case of Aff(V ) the answer is
yes. The case of saff(V ) is more complicate and will be presented only for the (first non-trivial) case
of dimV = 2 and two copies of saff(V ).
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6.1. The adjoint representation on N copies of Aff(V ).

Theorem 6.1. For any N ∈ N,

aff(V )⊕N
pr // GL(V )⊕N

πGL(V ),N// GL(V )⊕N//GL(V )

is the quotient by Aff(V ), i.e.

πAff(V ),N = πGL(V ),N ◦ pr.

Proof. First, we show that any Aff(V )-invariant morphism ϕ : aff(V )⊕N → Z factors through pr: Let
(X1, . . . , xN ) ∈ Aff(V ). Observe that (g, 0) · (X1, . . . , xN ) = (X1, . . . , XN , gx1, . . . , gxN ) for any g in
the center of GL(V ). This means that ϕ is constant on the set {(X1, . . . , XN )} × C∗(x1, . . . , xN ), hence
it is also constant on {(X1, . . . , XN )} × C(x1, . . . , xN ) and so

ϕ(X1, . . . , Xn, x1, . . . , xN ) = ϕ(X1, . . . , XN , 0, . . . , 0).

Let πAff(V ),N : aff(V )⊕N → Q be the quotient by Aff(V ). By the above there exists an Aff(V )-

invariant morphism θ : gl(V )⊕N → Q such that πAff(V ),N = θ ◦ pr. πGL(V ) ◦ pr is Aff(V )-invariant
hence there exists a unique Aff(V )-invariant morphism σ : Q→ gl(V )//GL(V ) such that σ◦πAff(V ),N =
πGL(V ),N ◦pr. θ is in particular GL(V )-invariant hence there exists a unique GL(V )-invariant morphism

ρ : gl(V )⊕N//GL(V )→ Q such that θ = πGL(V ),N ◦ ρ. The situation is summarised in the following
diagram:

aff(V )⊕N
pr //

πAff(V ),N

��

gl(V )⊕N

πGL(V ),N

��

θ

vv
Q

∃!σ// gl(V )⊕N//GL(V )

∃!ρ

dd

It follows that σ and ρ are inverse to each other, making ρ Aff(V )-invariant. This proves the claim. �

6.2. The adjoint representation on N copies of saffn. Remark that the adjoint action of SAff(V )
induces an action of (V N )+ and an action of SL(V ) on saff(V ). Theorem 6.2 states that there are
non-trivial V +-invariants on an open subset of saff(V )⊕2. For dim(V ) = N = 2, the quotient of the
adjoint action is found by combining the (V )+-invariants and SL(V )-invariants.

Observe that (saff(V )⊕2)detA·detB is a V +-stable subset of saff(V )⊕2.

Theorem 6.2.

(saff(V )⊕2)detA·detB −→ (sl(V )⊕2)detA·detB ⊕ V
(X,Y, x, y) 7−→ (X,Y, X−1x− Y −1y).

is the quotient of (saff(V )⊕2)detA·detB by the action of V +.

Proof. Let

π : (saff(V )⊕2)detA·detB −→ (sl(V )⊕2)detA·detB ⊕ V
(X,Y, x, y) 7−→ (X,Y, X−1x− Y −1y).

π is a surjective, V+-invariant and (sl(V )⊕2)detA·detB ⊕ V is normal. The fibres of π have the following
form:

π−1(X,Y, z) = {(X,Y, x, Y (X−1x− z)) : x ∈ V }
= {(X,Y )} ×Graph(x 7→ Y (X−1x− z)) ' {(X,Y )} × Im(Y )

On the other hand, let fX,Y : V −→ V × V , z 7→ (Xz, Y z). Then

V + · (X,Y, x, y) = {(X,Y, x−Xz, y − Y z) : z ∈ V }
= {(X,Y )} × ((x, y)− Im(f)X,Y ),
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fX,Y is linear and injective and so the dimension of the orbit is n = dim(V ). The dimension of the
fibre is n as well and since the orbit is contained in the fibre and both are closed and irreducible, they
are equal. By theorem 5.2 the claim follows. �

From now on, let dim(V ) = 2.

Lemma 6.3. Let

πV
+

: saff(V )⊕2 → saff(V )⊕2

(X,Y, x, y) 7→ (X,Y, Y Xx−X2y,XY y − Y 2x).

Then

(1) π is V +-invariant and SL(V )-equivariant.

(2) V(Ab+Ba)tr(AB)

(a)
⊂ Im(πV

+

)
(b)
⊂ V(Ab+Ba)

Proof. (1): This follows from X2 = det(X)Id.
(2): (a) Let (X,Y, x, y) ∈ V(Ab+Ba)tr(AB). We show that

π(X,Y, x
tr(XY ) ,

y
tr(XY ) ) = (X,Y, x, y).

From Xy + Y x = 0 it follows that −X2y = XY x, Y Xy = −Y 2x. Using tr(XY )Id = XY + Y X, this
implies that tr(XY )x = Y Xx−X2y, tr(XY )y = XY y − Y 2x. Hence

x = Y X x
tr(XY ) −X

2 y
tr(XY ) , y = XY y

tr(XY ) − Y
2 x

tr(XY ) .

(b) X(XY y − Y 2x) + Y (Y Xx−X2y) = X2Y y −XY 2x+ Y 2Xx− Y X2y = 0.
�

Lemma 6.4. For any X,Y ∈ sl(V ), let

ρX,Y : V × V −→ V × V, (x, y) 7→ (Y Xx−X2y,XY y − Y 2x).

(1) The following subsets of sl(V ) are equal:

V(A2, B2, AB) = {(X,Y ) ∈ sl(V )⊕2 : ρX,Y < 2}
= {(X,Y ) : Im ρX,Y ( ker((x̃, ỹ) 7→ Xỹ + Y x̃)}
= V(tr(AB), tr(B2), tr(A2))

(2) saff(V )⊕2 ⊃ V(Ab+Ba) has dimension 8.
(3) saff(V )⊕2 ⊃ V(tr(AB), tr(A2), tr(B2), Ab+Ba) has dimension at most six.

Proof. We will only proof (2) and (3) because (1) is an easy but somewhat long exercise.
(2): V(Ab+Ba) = V(f1, f2) where f1 = a11b1+a12b2+b11a1+b12a2 and f2 = a21b1−a11b2+b21a1−b11a2.
By the Serre-criterion we have I(V(Ab+Ba)) = (f1, f2). By Krull, V(f1) has dimension 9. Moreover,
it is irreducible since f1 is irreducible. Thus its coordinate ring O(saff(V )⊕2)/(f1) has no zero-divisors
and one can easily check that the class of f2 is non-zero and also non-invertible in O(saff(V )⊕2)/(f1).
So by Krull, dimV(Ab+Ba) = 8. (3): Let V ′ := V(tr(A2), tr(B2)). Observe that by the Serre-criterion
we have that

I(V ′) = (tr(A2), tr(B2)), I(V ′(tr(AB)) = (tr(A2), tr(B2), tr(AB)),

I(V ′(f1)) = (tr(A2), tr(B2), f1).(+)

Thus tr(AB) /∈ (tr(A2), tr(B2), f1). Also it is not invertible in O(V ′(f1)) and so by Krull it suffices to
show that V ′(f1) is irreducible and has dimension 7.

It is clear that V ′ is irreducible and of dimension 8. By (+) we have that f1 /∈ (tr(A2), tr(B2)) and
it is also non-invertible in O(V ′) from which it follows that

dimV(tr(A2), tr(B2), f1) = 7.

Lets show that the class f̄1 of f1 in O(V ′) is irreducible: Lets assume that O(V ′) 3 f̄1 = gh where
g, h ∈ O(V ′). O(V ′) is isomorphic to O(sl(V ))/(tr(A2), tr(B2)) and it is an integral domain hence
degxi

h,degxi
g ≤ degxi

f̄1 for every
xi ∈ {a11, a12, a21, b11, b12, b21, a1, a2, b1, b2}. It follows that either dega1 h = 0 or dega1 g = 0. Assume
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the first. Then f̄1 = hg = h(g0 + g1a1) where dega1 g0 = dega1 g1 = 0. Moreover, degb1 h = 0 or
degb1 g = 0. The second implies that degb1 g0 = degb1 g1 = 0 and h = h0 + h1b1 where degb1 h0 =
degb1 h1 = 0 which implies that h1g1 = 0. This means that either dega1 h = dega1 g = 0 or degb1 g =

degb1 h = 0 which is not possible. Hence degb1 h = 0 and so f = hg = h(g00 + g01b1 + g10a1) for some

g00, g10, g01 of degree 0 in b1. Proceeding like this for b2 and a2 we get that in fact degbi h = degai h = 0

for i = 1, 2. Thus f1 is irreducible and hence V ′(f1) is irreducible. �

Lemma 6.5. Let dim(V ) = 2. Then

πV
+

: saff(V )⊕2 → V(Ab+Ba) ⊂ saff(V )⊕2

(X,Y, x, y) 7→ (X,Y, Y Xx−X2y,XY y − Y 2x)

is the quotient by the adjoint action of SAff(V ) restricted to V +.

Proof of Lemma 6.5. Let

πV
+

: saff(V )⊕2 −→ saff(V )⊕2

(X,Y, x, y) 7−→ (X,Y, Y Xx−X2y,XY x− Y 2y)

Lemma 6.3 shows that ImπV
+ ⊂ V(Ab + Ba) and πV

+

is (V )+-invariant. Consider the commutative
diagramm

saff(V )⊕2 πV +

//

pr
''

V(Ab+Ba) �
� //

p

��

saff(V )⊕2

pr
ww

sl(V )× sl(V )

,

where pr is the canonical projection and p its restriction to V(Ab+Ba). V(Ab+Ba) is normal by the
Serre-criterion. Hence, to prove the claim, it suffices to verify the conditions (1) and (2′) in theorem 5.2.

Since codimV(Ab+Ba)V(Ab+Ba)\ ImπV + ≥ 2 is equivalent to dimV(Ab+Ba)\ ImπV + ≤ 6 by

6.4 (2), it suffices to show that V(Ab+Ba)\ Im(πV +) is contained in a variety of dimensionat most 6.
Let N := V(A2, B2, AB). Observe that by lemma 6.4 (1),

p−1(N ) = V(tr(A2), tr(B2), tr(AB), Ab+Ba)

which has dimension at most 6 by 6.4 (3). We show that V(Ab+Ba)\ ImπV + ⊆ p−1(N ).

(X,Y ) /∈ N 6.4(1)⇔ Im ρX,Y = ker ((x̃, ỹ) 7→ (Xỹ + Y x̃)) = V(Xỹ + Y x̃)

⇔ (x, y) ∈ V(Xỹ + Y x̃) implies (X,Y, x, y) ∈ Im ρX,Y

⇔ (X,Y, α, β) ∈ V(Ab+Ba) implies (X,Y, α, β) ∈ Im ρX,Y

Hence

p−1(sl(V )× sl(V )\N ) = {(X,Y, x, y) : (X,Y ) /∈ N}

⊆ {(X,Y, x, y) : (X,Y, x, y) ∈ Im ρX,Y } = ImπV
+

.

It follows that V(Ab + Ba)\ ImπV
+ ⊆ V(Ab + Ba)\p−1(sl(V ) × sl(V )\N ) = p−1(N ) and hence

V(Ab+Ba)\ ImπV + ⊆ p−1(N ).
(2’) follows from a short calculation that shows that every fibre of the open set V(Ab + Ba)det(A)

consists of exactly one orbit, which is closed because (V )+ is unipotent.
�

Lemma 6.6. Let dim(V ) = 2. Let πSL(V ) : saff(V )⊕2 → saff(V )⊕2//SL(V ).

saff(V )⊕2 πV +

// V(Ab+Ba)
πSL(V )

// (saff(V )⊕2//V +)//SL(V )

is the quotient of the adjoint action of SAff(V ) on saff(V )⊕2.
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Proof. saff(V )//V + = V(Ab+Ba) ⊂ saff(V )⊕2 by Lemma 6.5. V(Ab+Ba) is SL(V )-stable. It follows
that

Im(πSL(V ) ◦ πV
+

) = πSL(V )(V(Ab+Ba)) = V(Ab+Ba)//SL(V ).

Let πSAff(V ) : saff(V )⊕2 → Z be the quotient of the adjoint action of SAff(V ). We show that V(Ab+
Ba)//SL(V ) = Z:

Since πSAff(V ) is SAff(V )-invariant, it is also (V )+-invariant. Hence there exists a unique (V )+-

invariant morphism ϕ : V(Ab + Ba) → Z such that ϕ ◦ πV +

= πSAff(V ). Since πSL(V ) ◦ π is SAff(V )-
invariant there exists a unique SAff(V )-invariant morphism θ : Z → V(Ab + Ba)//SL(V ) such that

θ ◦ q = πSL(V ) ◦ πV +

. ϕ is SL(V )-invariant because πSAff(V ) is SAff(V )-invariant and πV
+

is SL(V )-

equivariant. Since πSL(V ) : V(Ab + Ba) → V(Ab + Ba)//SL(V ) is the quotient map of the action
of SL(V ), there exists a unique SL(V )-invariant morphism ψ : V(Ab + Ba)//SL(V ) → Z such that
ψ ◦ πSL(V ) = ϕ. The situation is summarised in the following commutative diagram:

saff(V )⊕2 πV +

//

πSAff(V )

��

V(Ab+Ba) �
� //

∃!ϕ

vv

πSL(V )

��

saff(V )⊕2

πSL(V )

��
Z

∃!θ//
V(Ab+Ba)//SL(V ) �

� //

∃!ψ

ll saff(V )⊕2//SL(V )

ψ and θ are inverse to each other, hence the claim follows. �

The following lemma is very well known. For a reference, see for example [Kraft11].

Lemma 6.7.
O(Q⊕2

3 )SO3 = O(sl⊕2
2 )SL2 = k[tr(A2), tr(B2), tr(AB)],

where Q3 is the set of the quadratic froms in three variables.

Remark 6.8. We can see easily that these invariants are also SAff(V )-invariants. Let a∗ =
[
−a2 a1

]
.

Then a∗b is SL(V )-invariant.

Theorem 6.9. Let dim(V ) = 2. The ring of invariants O(saff(V )⊕2)SL(V ) is spanned minimally by
the following invariants:

of degree 2: tr(A2) tr(AB) tr(B2) a∗b
of degree 3: a∗Aa a∗Ab b∗Ab a∗Ba a∗Bb b∗Bb
of degree 4: a∗ABa a∗ABb b∗ABb

where a∗ =
[
−a2 a1

]
.

To give an idea of the proof, the following remark will provide a nice foundation:

Remark 6.10. O(saff2
⊕2) =: O is normal, hence OSL2 is normal. Since SL2 is reductive, OSL2

is finitely generated. Hence OSL2 =
∑k
i=1 rik[t1, . . . , td] for some r1, . . . , rk ∈ OSL2 and some alge-

braically independent elements t1, . . . , td ∈ OSL2 . We can assume r1 = 1. Since OSL2 has a natural
grading (with weights on the generators), r2, . . . , rk can be chosen to be homogeneous. Furthermore,
the Hochster-Roberts theorem shows that OSL2 is a Cohen-Macaulay algebra, because SL2 is linearly
reductive and saff2

⊕2 smooth. This implies that the Hilbert series of OSL2 is of the form

HS(OSL2 , z) =
zp1 + · · ·+ zpk

(1− ze1)(1− zed)

where pi := deg ti and ei := deg ri. O is factorial, SL2 connected and has no nontrivial characters.
Hence OSL2 is factorial as well. A factorial Cohen-Macaulay algebra is aways Gorenstein. OSL2 being a
Cohen-Macaulay algebra and Gorenstein is equivalent to the Hilbert polynomial h(z) := zp1 + · · ·+zpk

being reciprocal, i.e. h(z) = zpkh(z−1). A reciprocal polynomial p(t) = a0 +a1z+ · · · anzn has the nice
property that ai = an−i. Also, h(z) has the property a1 ≤ a1 ≤ · · · ≤ ak, where k = n

2 if n is even and

k = n−1
2 if k is odd.

The theorems used can be found in [PV94].
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Idea of the proof of Theorem 6.9. Note that indeed all the thirteen polynomials are SL2-invariants.
Let us call them f1, . . . , f13. We use the tools of classical invariant theory (a summary of some classical
results can be found in e.g. [PV94]) and the aid of mathematica, Lie and singular to do the computa-
tions.
Consider the graded algebra k[z1, . . . , z7] where deg zi = 2 for i = 1, . . . , 4 and deg zi = 3 for i = 5, 6, 7.
There is an algebra homomorphism

A := k[z1, . . . , z7] −→ OSL2 , zi 7→ fi

The Hilbert series of A is

HS(A, t) =
1

(1− t2)4(1− t3)3
.

The action of SL2 on the summands Oj of the graded ring O is well known (cf. [Hil93]) and we can

compute dj := dimOSL2
j for each j. Hence we get the following table

i 0 1 2 3 4 5 6 7 . . .
dimAi 1 0 4 3 10 12 26 30 . . .
di 1 0 4 6 13 24 47 70 . . .

We can obtain the Hilbert series of OSL2 from the Hilbert series of A by adding graded summands to
A: Let z8, . . . , z13 be some new variables with deg zi = 3 for i = 8, 9, 10, deg zi = 4 for i = 11, 12, 13.
The table shows that the coefficients of the first seven Hilbert series coefficients of A+ z8A+ · · · z13A
and OSL2 are equal. In fact,

HS(A+
∑
i

ziA, t) =
1 + 3t3 + 3t4 + t7

(1− t2)4(1− t3)3
,

and its Hilbert polynomial is reciprocal. Adding any more new variables would result in the Hilbert
polynomial of the new algebra not being reciprocal or its coefficients not having the property mentioned
in remark 6.10. Hence OSL2 and A +

∑13
i=8 ziA have the same Hilbert series and thus the algebra

homomorphism

A+

13∑
i=8

ziA −→ OSL2 , zi 7→ fi

is surjective. Therefore, OSL2 is generated by f1, . . . , f13. Moreover, it is minimally generated by them
since its Hilbert polynomial is irreducible. �

Corollary 6.11. Let dim(V ) = 2. The invariant ring O(saff(V )⊕2)SAff(V ) is spanned by the following
invariants modulo the ideal (Ab+Ba)SL(V ):

of degree 2: tr(A2) tr(AB) tr(B2) a∗b
of degree 3: a∗Aa a∗Ab b∗Ab a∗Ba a∗Bb b∗Bb
of degree 4: a∗ABa a∗ABb b∗ABb

where a∗ =
[
−a2 a1

]
.

Proof. (Ab+ Ba) is a SL(V )-stable ideal and I(V(Ab+ Ba)) = (Ab+ Ba). By Lemma 6.6, it follows
that

O(saff2)SAff2 ' O(saff(V )⊕2)SL(V )/(Ab+Ba)SL(V ).

�
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